Alpha-Driven MHD and MHD-Induced Alpha Loss in TFTR DT Experiments

Zuoyang Chang

for the TFTR Group

Princeton Plasmas Physics Laboratory

APS Invited talk

November 1996, Denver

Introduction

TFTR

- Alpha particles can drive and/or be expelled by MHD in a D-T reactor.
- In ITER:
 - > 5% alpha-loss may damage first wall.
 - large alpha-loss will reduce ignition margin.
- Two important observations in recent TFTR D-T experiments:
 - (1) Alpha-driven toroidal Alfven Eigenmodes (TAEs)
 - (2) Alpha-loss induced by kinetic ballooning modes (KBMs)

Alpha-driven TAEs in TFTR

TFTR

- Alpha-driven TAE not observed in previous TFTR D-T experiments.
 - ► Fusion power < 10.7 MW, < 0.3 %.

(expect $\sim 0.5-1\%$ in ITER)

- Theory predicts TAE can be more unstable for:
 - Reduce beam and thermal ion Damping (look in post NBI phase)
 - Low central magnetic shear [G. Fu et al]
 - High central q [D. Spong]

-TAE Observed in TFTR

TFTR

TAE observed in post neutral beam phase.

[R. Nazikian et al, '96 IAEA, submitted to P

Mode Frequency Consistent with TAE Frequency

TFTR

- $f_{TAE} = V_A/4 qR$
- High and low q(0) included

-TAE Located in Plasma Core

TFTR

 n=3 TAE observed on Core Reflectometer Channel

Density perturbation analysis gives mode location :

 $^{\circ}$ n/n 10⁻⁴ at r/a 0.42 --> $^{\circ}$ B/B~10⁻⁵

High q(0) has Lower Threshold

TFTR =

Threshold is a factor of 2 lower in high q₀ plasmas.

Importance of High Central q

TFTR

- TAE plasmas have lower than supershot
- High q₀ reduces the threshold.

q₀ is not the only parameter for -TAE.

Mode Frequency Lies Inside Calculated Gap in n=3 Alfvén Continuum

TFTR⁻

NOVA-K code: Fu

Stability analysis identifies dominant n=3 mode.

TAE Calculated Unstable in High q(0) plasma

TFTR'

NOVA-K code: Fu

- Low shear and high q(0) are destabilizing.
- Stability is sensitive to small change in q(0).

[For more discussion, refer poster 1S29 by Fu]

-TAE Peaks on High-Field Side

TFTR⁻

 Normal ballooning Structure for ICRF-TAE and KBM

No Alpha Loss due to -TAE

TFTR

- Both fast-ion loss scaling and particle simulation show:
 - Present -TAE too weak to cause measurable alpha loss.

Alpha Loss due to KBM Observed

 Significant alpha-loss enhancement observed in kinetic-ballooning-mode (KBM) case.

Alpha Loss Correlated with KBM

TFTR

 Large enhanced loss observed in high-beta high-power DT plasmas.

A factor of 2 loss increase due to n 6 KBM.

The Ballooning Modes Locate around Maximum P

TFTR

 Ballooning feature also observed from Mirnov coils.

Results of KBM Stability Analysis

TFTR

- Mode classification
 - ► Not TAEs. (f_{TAF} ~ 300 kHz)
 - Not BAEs (beam-driven Alfven eigenmodes):

~ *pi/ 2 --- KBM scaling

- Different from idea ballooning disruption precursor
- ==> Kinetic ballooning modes

Kinetic FULL code calculation

--- G. Rewoldt and W. Tang

- Driven by background pressure gradient.
- Effects from beam-ion and alpha are small.
- Mode location agrees with experiment.
- Maximum linear growth rate has n=14. (nonlinear effects may down-shift n.)
- Two-fluid calculation --- L. Zakharov
 - Ballooning unstable.
 - ► High n (>10) modes suppressed by *i effects.

Simulation of Wave-Particle Interaction

TFTR

ORBIT code simulation --- R. White

Basic feature: passing alpha + KBMs

lose energy to KBM, change pitch angle trapped escape

- KBMs can cause ~100% increase in lost alphas.
 --- consistent with experiment.
- Global modes will be more dangerous.

Conclusions

TFTR

Alpha-driven TAE

- Observation of alpha-driven TAE opened a new chapter in fusion plasma physics.
- Initial analysis showed good agreement between theory and experiment (frequency, resonance, mode structure, stability, ...).

KBM-induced alpha loss

- KBM in high-beta D-T plasmas caused substantial alpha loss (a factor of 2 enhancement).
- Particle simulation quantitatively demonstrated the alpha loss mechanism.

